Guts Round ## Lexington High School March 23, 2019 | 10th Annual Lexing | gton Math Tournament - Guts Round - Part 1 | |---|---| | Team Nam | e: | | - | with eight slices. On each slice, she either adds only salt, only pepper, or
ne how many ways there are for Alice to season her entire pizza. | | 2. [5] Call a number <i>alm</i> numbers less than 100. | ost prime if it has exactly three divisors. Find the number of almost prime | | 3. [5] Determine the mapentagon. | ximum number of points of intersection between a circle and a regular | | | gton Math Tournament - Guts Round - Part 2 | | Team Nam | e: | | 4. [5] Let $d(n)$ denote the | e number of positive integer divisors of n . Find $d(d(20^{18}))$. | | 5. [5] 20 chubbles are eq
are 1000 chubbles worth | ual to 19 flubbles. 20 flubbles are equal to 18 bubbles. How many bubbles i? | | 6. [5] Square <i>ABCD</i> and | equilateral triangle EFG have equal area. Compute $\frac{AB}{EF}$. | | | gton Math Tournament - Guts Round - Part 3 | | Team Nam | e: | | 7. [6] Find the minimum | value of y such that $y = x^2 - 6x - 9$ where x is a real number. | | - | d socks, 5 pairs of white socks, and 7 pairs of blue socks. If I randomly pull ithout replacement, how many socks do I need to draw to guarantee that I cks of the same color? | | paths from the library to | from my house to the school, 29 paths from the school to the library, and 3 town center. Additionally, there are 6 paths directly from my house to the hrough the library to get to town center, how many ways are there to travel ay to the town center? | | | 10th Annual Lexington Math Tournament - Guts Round - Part 4 | |---------------|---| | | Team Name: | | | 10. [6] A circle of radius 25 and a circle of radius 4 are externally tangent. A line is tangent to the circle of radius 25 at A and the circle of radius 4 at B , where $A \neq B$. Compute the length of AB . | | | 11. [6] A gambler spins two wheels, one numbered 1 to 4 and another numbered 1 to 5, and the amount of money he wins is the sum of the two numbers he spins in dollars. Determine the expected amount of money he will win. | | | $12.$ [6] Find the remainder when 20^{19} is divided by 18. | | • • • • • • • | 10th Annual Lexington Math Tournament - Guts Round - Part 5 | | | Team Name: | | | 13. [7] Two concentric circles have radii 1 and 3. Compute the length of the longest straight line segment that can be drawn from a point on the circle of radius 1 to a point on the circle of radius 3 if the segment cannot intersect the circle of radius 1. | | | 14. [7] Find the value of $\frac{1}{3} + \frac{2}{9} + \frac{3}{27} + \frac{4}{81} + \frac{5}{243} + \dots$ | | | 15. [7] Bob is trying to type the word "welp". However, he has a $\frac{1}{8}$ chance of mistyping each letter and instead typing one of four adjacent keys, each with equal probability. Find the probability that he types "qelp" instead of "welp". | | | 10th Annual Lexington Math Tournament - Guts Round - Part 6 | | | Team Name: | | | 16. [7] How many ways are there to tile a 2×12 board using an unlimited supply of 1×1 and 1×3 pieces? | | | 17. [7] Jeffrey and Yiming independently choose a number between 0 and 1 uniformly at random. What is the probability that their two numbers can form the sidelengths of a triangle with longest side of length 1? | | | 18. [7] On $\triangle ABC$ with $AB = 12$ and $AC = 16$, let M be the midpoint of BC and E, F be the points such that E is on AB , F is on AC , and $AE = 2AF$. Let G be the intersection of EF and are an expectable and EF and EF and EF and EF and EF are a substitute substitut | | 10th Annual Lexington Math Tournament - Guts Round - Part 7 | |---| | Team Name: | | 19. [8] Find the remainder when $2019x^{2019} - 2018x^{2018} + 2017x^{2017} - \dots + x$ is divided by $x + 1$. | | 20. [8] Parallelogram $ABCD$ has $AB = 5$, $BC = 3$, and $\angle ABC = 45^{\circ}$. A line through C intersects AB a M and AD at N such that $\triangle BCM$ is isosceles. Determine the maximum possible area of $\triangle MAN$. | | 21. [8] Determine the number of convex hexagons whose sides only lie along the grid shown below | | | |
10th Annual Lexington Math Tournament - Guts Round - Part 8 | | Team Name: | | | | 22. [8] Let $\triangle ABC$ be a triangle with side lengths $AB = 4$, $BC = 5$, and $CA = 6$. Extend ray \overrightarrow{AB} to a point D such that $AD = 12$, and similarly extend ray \overrightarrow{CB} to point E such that $E = 15$. Let $E = 15$ and $E = 15$ be points on the circumcircles of $E = 15$ and $E = 15$ between the length of $E = 15$ and $E = 15$ between the length of $E = 15$ and $E = 15$ between the length of | | 22. [8] Let $\triangle ABC$ be a triangle with side lengths $AB = 4$, $BC = 5$, and $CA = 6$. Extend ray \overrightarrow{AB} to a point D such that $AD = 12$, and similarly extend ray \overrightarrow{CB} to point E such that $E = 15$. Let $E = 15$ and $E = 15$ be points on the circumcircles of $E = 15$ and $E = 15$ between $E = 15$ and $E = 15$ are the points on the circumcircles of $E = 15$ and $E = 15$ are the points on the circumcircles of $E = 15$ and $E = 15$ are the points on the circumcircles of $E = 15$ and $E = 15$ are the points on the circumcircles of $E = 15$ and $E = 15$ are the points on the circumcircles of $E = 15$ and $E = 15$ are the points on the circumcircles of $E = 15$ and $E = 15$ are the points of | | 22. [8] Let △ABC be a triangle with side lengths AB = 4, BC = 5, and CA = 6. Extend ray AB to a point D such that AD = 12, and similarly extend ray CB to point E such that CE = 15. Let M and N be points on the circumcircles of ABC and DBE, respectively, such that line MN is tangent to both circles. Determine the length of MN. 23. [8] A volcano will erupt with probability 1/20-n if it has not erupted in the last n years. Determine | | 22. [8] Let △ABC be a triangle with side lengths AB = 4, BC = 5, and CA = 6. Extend ray AB to a point D such that AD = 12, and similarly extend ray CB to point E such that CE = 15. Let M and N be points on the circumcircles of ABC and DBE, respectively, such that line MN is tangent to both circles. Determine the length of MN. 23. [8] A volcano will erupt with probability 1/20-n if it has not erupted in the last n years. Determine the expected number of years between consecutive eruptions. 24. [8] If x and y are integers such that x + y = 9 and 3x² + 4xy = 128, find x. | |
 22. [8] Let △ABC be a triangle with side lengths AB = 4, BC = 5, and CA = 6. Extend ray AB to a point D such that AD = 12, and similarly extend ray CB to point E such that CE = 15. Let M and N be points on the circumcircles of ABC and DBE, respectively, such that line MN is tangent to both circles. Determine the length of MN. 23. [8] A volcano will erupt with probability 1/20-n if it has not erupted in the last n years. Determine the expected number of years between consecutive eruptions. 24. [8] If x and y are integers such that x + y = 9 and 3x² + 4xy = 128, find x. 10th Annual Lexington Math Tournament - Guts Round - Part 9 | | 22. [8] Let △ABC be a triangle with side lengths AB = 4, BC = 5, and CA = 6. Extend ray AB to a point D such that AD = 12, and similarly extend ray CB to point E such that CE = 15. Let M and N be points on the circumcircles of ABC and DBE, respectively, such that line MN is tangent to both circles. Determine the length of MN. 23. [8] A volcano will erupt with probability 1/20-n if it has not erupted in the last n years. Determine the expected number of years between consecutive eruptions. 24. [8] If x and y are integers such that x + y = 9 and 3x² + 4xy = 128, find x. | | 22. [8] Let △ABC be a triangle with side lengths AB = 4, BC = 5, and CA = 6. Extend ray AB to a point D such that AD = 12, and similarly extend ray CB to point E such that CE = 15. Let M and N be points on the circumcircles of ABC and DBE, respectively, such that line MN is tangent to both circles. Determine the length of MN. 23. [8] A volcano will erupt with probability 1/20-n if it has not erupted in the last n years. Determine the expected number of years between consecutive eruptions. 24. [8] If x and y are integers such that x + y = 9 and 3x² + 4xy = 128, find x. 10th Annual Lexington Math Tournament - Guts Round - Part 9 | |
 22. [8] Let ΔABC be a triangle with side lengths AB = 4, BC = 5, and CA = 6. Extend ray AB to a point D such that AD = 12, and similarly extend ray CB to point E such that CE = 15. Let M and N be points on the circumcircles of ABC and DBE, respectively, such that line MN is tangent to both circles. Determine the length of MN. 23. [8] A volcano will erupt with probability 1/20-n if it has not erupted in the last n years. Determine the expected number of years between consecutive eruptions. 24. [8] If x and y are integers such that x + y = 9 and 3x² + 4xy = 128, find x. 10th Annual Lexington Math Tournament - Guts Round - Part 9 Team Name: | | 10th Annual Lexington Math Tournament - Guts Round - Part 10 | |---| | Team Name: | | 28. [11] Let $\triangle ABC$ be a triangle with side lengths $AB = 13$, $BC = 14$, $CA = 15$. Let H be the orthcenter of $\triangle ABC$, M be the midpoint of segment BC , and F be the foot of altitude from C to AB . Let K be the point on line BC such that $\angle MHK = 90^\circ$. Let P be the intersection of HK and AB . Let Q be the intersection of circumcircle of $\triangle FPK$ and BC . Find the length of QK . | | 29. [11] Real numbers (x, y, z) are chosen uniformly at random from the interval $[0, 2\pi]$. Find the probability that | | $\cos(x) \cdot \cos(y) + \cos(y) \cdot \cos(z) + \cos(z) \cdot \cos(x) + \sin(x) \cdot \sin(y) + \sin(y) \cdot \sin(z) + \sin(z) \cdot \sin(x) + 1$ | | is positive. | | 30. [11] Find the number of positive integers where each digit is either 1, 3, or 4, and the sum of the digits is 22. | |
10th Annual Lexington Math Tournament - Guts Round - Part 11 | | Team Name: | | 31. [13] In $\triangle ABC$, let D be the point on ray \overrightarrow{CB} such that $AB = BD$ and let E be the point on ray \overrightarrow{AC} such that $BC = CE$. Let E be the intersection of E and circumcircle of E and E . The exterior angle bisector of E intersects E at E and it follows that E and E are collinear, find E and E are collinear, find E and E are collinear, find E and E are collinear. | | 32. [13] Let a be the largest root of the equation $x^3 - 3x^2 + 1 = 0$. Find the remainder when $\lfloor a^{2019} \rfloor$ is divided by 17. | | 33. [13] For all $x, y \in \mathbb{Q}$, functions $f, g, h : \mathbb{Q} \to \mathbb{Q}$ satisfy $f(x + g(y)) = g(h(f(x))) + y$. If $f(6) = 2$, $g(\frac{1}{2}) = 2$, and $h(\frac{7}{2}) = 2$, find all possible values of $f(2019)$. | | 10th Annual Lexington Math Tournament - Guts Round - Part 12 | |--| | Team Name: | | 34. [15] An <i>n-polyomino</i> is formed by joining <i>n</i> unit squares along their edges. A free polyomino is a polyomino considered up to congruence. That is, two free polyominos are the same if there is a combination of translations, rotations, and reflections that turns one into the other. Let $P(n)$ be the number of free <i>n</i> -polyominos. For example, $P(3) = 2$ and $P(4) = 5$. Estimate $P(20) + P(19)$. If your estimate is E and the actual value is E , your score for this problem will be | | $\max\left(0,\left\lfloor 15-10\cdot \left \log_{10}\left(\frac{A}{E}\right)\right \right\rfloor\right).$ | | 35. [15] Estimate $ \sum_{k=1}^{2019} \sin(k), $ | | where k is measured in radians. If your estimate is E and the actual value is A , your score for this problem will be | | $\max(0, 15 - 10 \cdot E - A)$. | | 36. [15] For a positive integer n , let $r_{10}(n)$ be the number of 10-tuples of (not necessarily positive) integers $(a_1, a_2,, a_9, a_{10})$ such that | | $a_1^2 + a_2^2 + \ldots + a_9^2 + a_{10}^2 = n.$ | | Estimate $r_{10}(20) + r_{10}(19)$. If your estimate is E and the actual value is A , your score for this problem will be $\max\left(0, \left 15 - 10 \cdot \left \log_{10}\left(\frac{A}{E}\right)\right \right \right).$ | | | | |